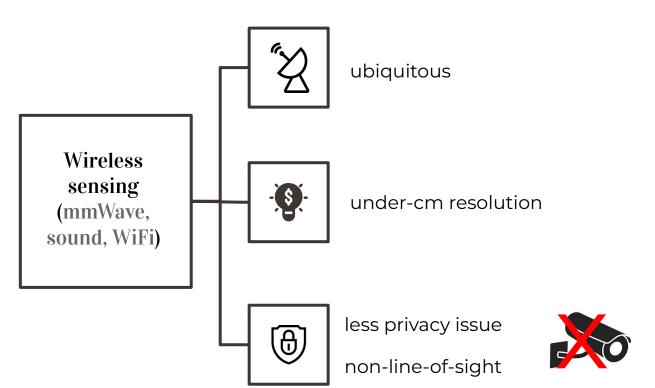
WixUp: A Generic Data Augmentation Framework for Wireless Human Tracking

Yin Li, Rajalakshmi Nandakumar

Intro to wireless human tracking

- Intro to wireless human tracking



- Intro to wireless human tracking

Problems of using data-driven, learning-based algorithms:

- Insufficient training data
 - Efforts for data collection from physical world

- Poor model generalizability:
 - Explosion in search space. e.g. 3D human tracking

- Intro to wireless human tracking

Remedy = Data augmentation:

- In CV, NLP...
- In wireless:
 - o using **generative model** to generate pseudo data for certain tasks, data formats, etc.
 - by slightly shifting, rotating, or adding noise in the feature maps and the ground truth (closed-form)
 - lack of benchmarking

Can we build a generic data augmentation for wireless signals?

- Intro to wireless human tracking

Remedy = Data augmentation:

- In CV, NLP...
- In wireless
 - o using **generative model** to generate pseudo data for certain tasks, data formats, etc.
 - by slightly shifting, rotating, or adding noise in the feature maps and the ground truth (closed-form)
 - lack of benchmarking

Can we build a generic data augmentation for wireless signals?

- Tailored for unique characteristics of wireless signals
- Work for different (datasets) tasks, data formats, models, modalities, etc.

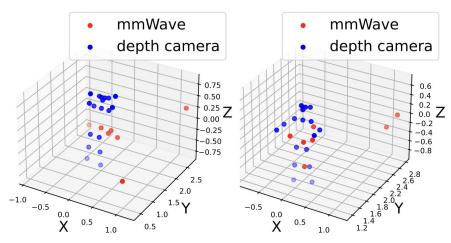
- Intro to wireless human tracking

Challenges:

The sparsity issue in wireless point clouds in public datasets

Datasets availability and discrepancy

- No raw signal available
- Lossy point clouds only



We propose **WixUp**

Goal:

A generic data augmentation framework tailored for unique characteristics of wireless signal

Tested for:

- 3 Tasks: Pose Estimation, Action Recognition, User ID
- 3 Models architectures: DGCNN, PointTransformer, LSTM+CNN
- 2 **Data Formats**: Raw signals, Point Clouds
- 2 **Modalities**: mmWave, Acoustics

We propose **WixUp**

Overview:

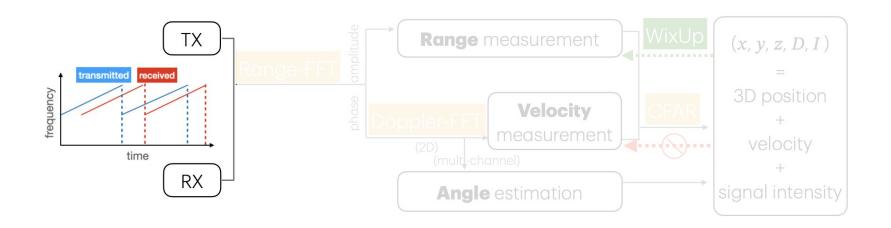
- A **mixing-based** local augmentation
- A custom Gaussian mixture and probability-based transformation
- In-depth augmentation at the dense range profile level.

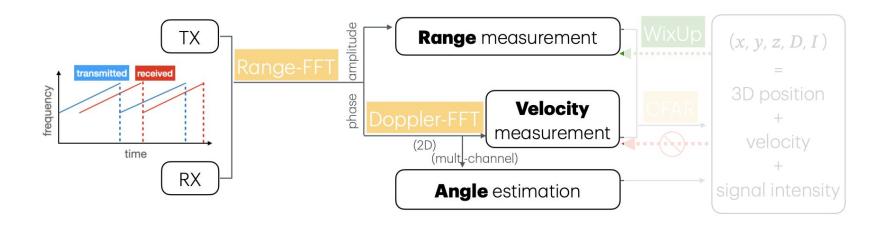
Usage:

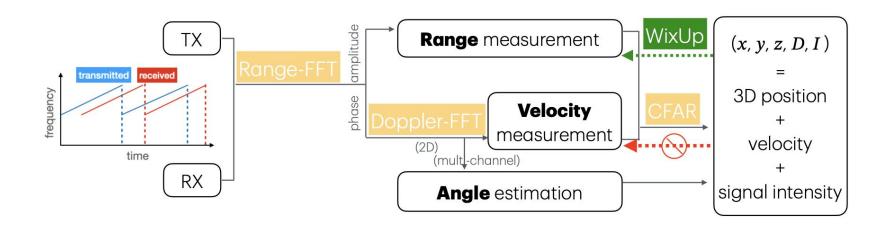
- Improving accuracy for supervised learning
- **Unsupervised domain adaptation** via self-training (training without ground truth labels)

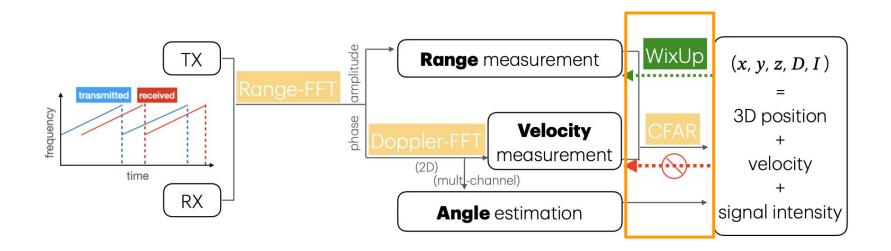
O2 Method

A generic data augmentation framework

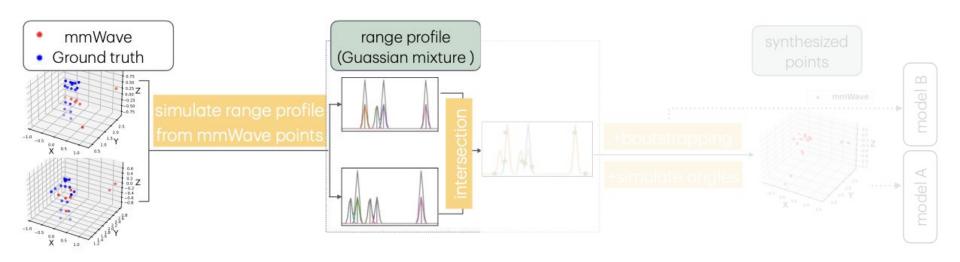




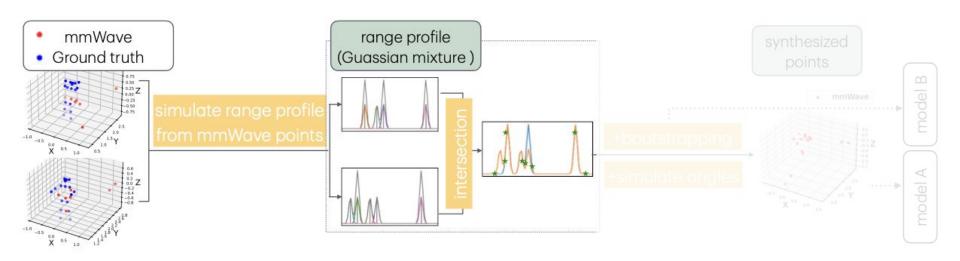




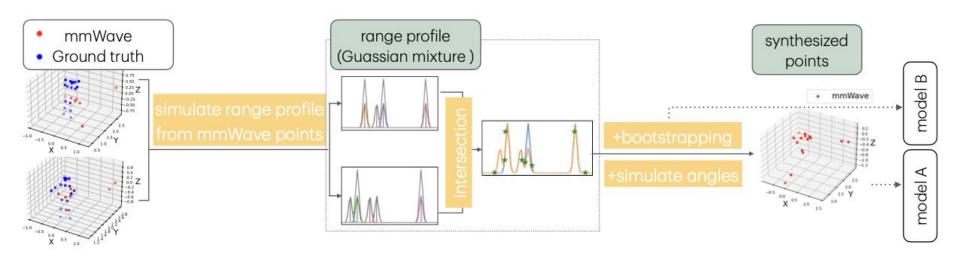
- A demonstration of the data mixing pipeline of WixUp.



- A demonstration of the data mixing pipeline of WixUp.



- A demonstration of the data mixing pipeline of WixUp.



03 Experiments

Experiment

- setup

Datasets:

mmWave: MiliPoint [17], MARS [6], MMFi [54]

Acoustics: Custom Hand Tracking Dataset [31]

- **MiliPoint**: fitness movements, 49 actions, 545K frames, 11 subjects, 77–81GHz radar, stereo camera, 3D point clouds only, 24Hz
- MARS: rehabilitation, 10 movements, 40K frames, 4 subjects, 76–81GHz radar, Kinect V2, 64 5D points, 30Hz.
- MMFi: multimodal, 27 actions, 320K frames, 40 subjects, mmWave + LiDAR + WiFi CSI + RGB/IR, 30Hz,.
- **Acoustic**: hand tracking, 21 finger joints, 64 mins, 11 users, ultrasound 17–20kHz, 7-mic array, Leap Motion, 90–110Hz, 3.57mm resolution.

Experiment

- setup

Datasets:

mmWave: MiliPoint [17], MARS [6], MMFi [54]

Acoustics: Custom Hand Tracking Dataset [31]

Tasks & Metrics

Pose Estimation (MPJPE / MLE in cm)

Action Recognition (Accuracy %)

User Identification (Accuracy %)

Models: DGCNN, PointTransformer; CNN+LSTM

Baselines: a global scaling augmentation (CGA), no-augmentation, (stacking)

Experiment results
Supervised Learning (Generalizability: Datasets, Models)

	DGCNN			PointTransformer		
	MiliPoint	MARS	MMFi	MiliPoint	MARS	MMFi
Null	24.36	28.89	28.53	17.15	25.64	24.69
CGA	23.26(+4.55%)	22.89(+20.76%)	26.25(+8.00%)	16.88(+1.60%)	20.74(+19.10%)	24.03(+2.68%)
WixUp	23.25(+4.58%)	22.65(+21.60%)	25.84(+9.42%)	16.81(+1.97%)	20.35(+20.64%)	22.73(+7.96%)
WixUp+	23.10(+5.18%)	21.10(+26.95%)	25.60(+10.28%)	16.67(+2.79%)	21.35(+16.72%)	23.26(+5.80%)

Experiment results Supervised Learning (Generalizability: Tasks, Modalities)

	(Acc%)	(Acc%)
26		
.30	0.8766	0.1305
.26(+4.55%)	0.9097(+3.77%)	0.2143(+64.17%)
.25(+4.58%)	0.9031(+3.03%)	0.1924(+47.44%)
.10(+5.18%)	0.9229(+5.29%)	0.2405(+84.25%)
	.25(+4.58%)	.25(+4.58%) 0.9031(+3.03%)

Experiment results

Unsupervised Domain Adaptation (UDA) via self-training

Goal:

Reduce labeling effort for new users/environments

Experiment results

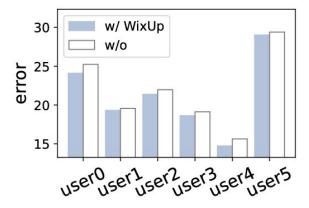
Unsupervised Domain Adaptation (UDA) via self-learning

Goal:

Reduce labeling effort for new user

UDA Across Users:

- Leave-one-user-out setup.
- WixUp UDA consistently improves performance vs. no adaptation baseline.
- Average Improvement: +3.04% (Range: 1.26% 5.83%).



Experiment results

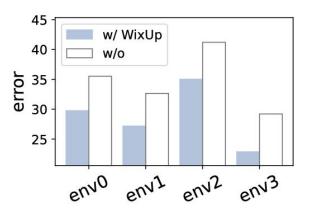
Unsupervised Domain Adaptation (UDA) via self-learning

Goal:

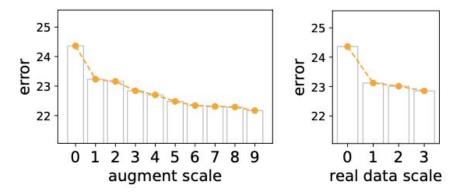
Reduce labeling effort for new environment

UDA Across Environments:

- Leave-one-scene-out setup (new scene implies new user too).
- WixUp UDA provides significant improvements v.s. no-adaptation baseline
- Average Improvement: +17.45% (Range: 15.04% 21.73%).



Experiment results Benefits scale up



Expanding the augment data size by tweaking WixUp bring further drops in errors.

Experiment results *Comparison with generative data augmentations*

	Action (body)	Identification	Domain adaptation
	Action (body)	identification	(Action/Keypoint)
NeRF2 [65]	NA	NA	NA
RF-Gen [13]	Ξ.	NA	$(6.04\%\sim56.42\%)$
RF-Diffusion [15]	1.8%~8.7%(1.98%~11.01%)	_	(5.34%~16.20%)
WixUp	11%(84.25%)	2.0% (5.29%)	(1.26%~21.73%)

Comprehensive comparison with generative data augmentation (NA: not applicable; -: not reported)

O4 Conclusion

Conclusion and future work

Conclusion

- **Problem**: Data scarcity limit deep learning in wireless sensing.

- **WixUp**: A generic, training-free, mixing-based, semi-real data augmentation framework.
 - Handles diverse data formats via mixture of Gaussian simulation.
 - Performs augmentation at the information-rich range-profile level.

Key Results:

- Consistent supervised performance gains (2.79%-84.25%) across datasets, models, tasks, modalities.
- Demonstrated significant improvements via unsupervised domain adaptation for unseen users (+3.04%) and environments (+17.45%).

Future work

- Scope:

Potential for extension to other domains (healthcare, agriculture) & modalities (WiFi).

Methods:

- Add kinematic constraints/filters for pose feasibility.
- Explore cross-dataset / cross-modality un-supervised domain adaptation...
- Adapt WixUp for non-FMCW signal types.

Thanks! Q&A

Feel free to reach out:

- [GitHub] https://github.com/lydhr/wixup
- <u>yl3243@cornell.edu</u>
- 🌐 lynneli.xyz

Questions

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**

	Action (body)	Identification	Domain adaptation
	Action (body)	identification	(Action/Keypoint)
NeRF2 [65]	NA	NA	NA
RF-Gen [13]	-	NA	$(6.04\%\sim56.42\%)$
RF-Diffusion [15]	1.8%~8.7%(1.98%~11.01%)	<u>4</u> 9	(5.34%~16.20%)
WixUp	11%(84.25%)	2.0% (5.29%)	$(1.26\% \sim 21.73\%)$

Table 5: Comprehensive comparison with generative DA. [NA = not applicable; - = not reported]

	MiliPoint	MARS	MMFi
Null	24.36	28.89	28.53
vanilla	24.29(+0.29%)	22.8(+21.08%)	25.93(+9.11%)
+Boostrap	23.25(+4.58%)	22.65(+21.60%)	25.84(+9.42%)
+CGA	23.10 (+5.18%)	21.10(+26.95%)	25.60(+10.28%)
Col. Securitaria acces	200.0	90a (VISV)	49/04/A 50 000/A 509 NOV 0.150 000/60

Table 6: Ablation study on incremental versions of WixUp proves the effectiveness of each component.