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Background
- Intro to acoustic sensing

Using ultrasound for human tracking O speaker
has been an active research field in /
wireless sensing.
Acoustic sensing applications
gesture recognition
breath rate/heart rate detection
intrusion detection

VR/AR interaction

— .



Background
- Intro to acoustic sensing

speaker
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Acoustic sensing:

Transform the smart device
into a SONAR system by
leveraging the speaker and
microphone on device for
motion tracking.
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Background
- Intro to acoustic sensing

Acoustic

R

sensing

ubiguitous

under-cm resolution

Speed << RF

less privacy issue

non-line-of-sight




Background
- Problem of acoustic sensing

Problem: coarse-granularity and usability

- Current acoustic sensing applications are coarse-grained
- Presence detection, gesture classification, single point tracking, etc.

No tracking




Background
- Problem of acoustic sensing

Problem: coarse-granularity and usability

More applications with the

- HCI: continuous hand tracking
input

- Sports analysis

- Rehabilitation

- Semantically better gesture
recognition (sign language
recognition)

Continuous & unlimited tracking




Background
- Problem of acoustic sensing

Motivation: towards the fine-grained acoustic sensing

- The weakness of the
-  On-body sensors: intrusive
- Cameras: privacy issue; much worse with occlusion
- USRP/WiFi: large expensive MIMO (multi antenna)




Background
- What is fine-grained?

-grained -grained
Gesture classification <=2 multi-target hand tracking
-grained -grained
sub-mm localization of a 21 hand joints
single point: breath 16 body joints...

detection, writing in the air




Background
- Why fine-grained?

Coarse-grained: limited use cases

Fine-grained: comparable to depth camera
--> various downstream Apps
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Towards fin




Method

- Overview

We proposed the first fine-grained acoustic sensing pipeline for hand tracking on a
commercial smart speak!l.
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Method

- Overview

We proposed the first fine-grained acoustic sensing pipeline for hand tracking on a
commercial smart speak!l.
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Method

- Frequency-modulated continuous wave

Preliminary exploration: select
®\ the right type of modulation

—MISICBeA

—Ste-wave

- FMCW: each received
signal is a time-delay
version of the transmitted
signal shifted by a different
amount of time
proportional to the
distance.

frequency

20k
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reflected signal
from multiple path

f t+A | | time




Method

- Successive subtraction for denoising

Fine-grained range profile
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Method

- Successive subtraction for denoising

Fine-grained range profile
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Method

- Starting time error cancelation

Starting time cancelation
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Method

- Dechirping by cross-correlation provides better range resolution

X

X

raw signal cross-correlation

—> resolution under cm

frequency domain cross-correlation

—> efficient computation

1

— XcX

fs

1 343

2~ 48000 X 2

= 0.00357m = 3.57mm




Method

- Dechirping by cross-correlation provides better range resolution

raw signal cross-correlation 1 1 343
ry p — XX —=—— =0.00357m = 3.57mm

. fs 2 48000 X 2
—> resolution under cm
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frequency domain cross-correlation
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—> efficient computation
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Method
- Study design: unbounded to pre-defined gestures

Data collection guiding video

(not gesture classification but continuous tracking)
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Method

- Training strategies: curriculum learning

Training strategies:

- Curriculum learning
- Data augmentation

LI > 757,
: /v& 7 63 coordinates - - -;-
: I :

CL trains the model hierarchically
- from simple gesture sets to complex
finger motions;
- avoid overfitting
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Method

- Training strategies: data augmentation

Training strategies:

- Data augmentation most sensitive to the change of y-axis

|

shift the starting time cancellation cut-off

2x 102
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1.8 x 102

MSE loss(mm)

each shift results in +/-3.5mm of ground
1.75 x 102 \ f= ..
( 1 truth y of all 21 joints

o]
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Experiments




Experiment
- setup

Hardware setup

LS. z
Leap Motion
_(only for ground truth)

Same layout and sensitivity as Amazon Echo dot 2nd




Experiment
- user study

- 11 participants

- b sessions per user, 2min per session, 3 locations
- 2 users for extensive pretraining
- additional validation: extra data collection (10+)

%W\WW!




Experiment results

- cross-user
Evaluation:
mean | median | 90th percentile
user-independent | 16.47 14.57 25.23
user-adaptive 10.36 9.72 18.48
user-dependent | 12.49 10.33 21.41

Mean absolute error

£ #1 @”"{ {4

Visualization of sample results. The grey skeleton is ground truth; the cyan is our prediction




Experiment results
- cross-user/environment

Evaluation: cross user/environment
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User study: the system performance is independent of user and environment.




Experiment results
- error analysis
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(a) Range of the wrist (b) Finger-wise error (c) Bone-wise error (d) Data augmentation (e) Finger flexion angles

Error analysis from different perspectives




Experiment results
- error analysis

Evaluation: error analysis

MAE(mm)

(a) Range of the wrist

Error analysis from different perspectives




Experiment results
- error analysis

Evaluation: error analysis
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(b) Finger-wise error (c) Bone-wise error

Error analysis from different perspectives




Experiment results
- error analysis

Evaluation: error analysis
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(d) Data augmentation

Error analysis from different perspectives




Experiment results
- error analysis

Evaluation: error analysis

Error analysis from different perspectives
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Experiment results
- error analysis

Evaluation: error analysis
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Error analysis from different perspectives
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Experiment results
- effect of interference

Evaluation - effect of interference: audible noise, moving objects, and reduce in power

(a) audible noise (b) power (c) motion interference
201 301
= 301
E 151
v} 20 20
<
= 101
5| 1o
60db  70db 30db  40db adapted adapted 30-60cm adapted 60-90cm
noise noise 30db 40db 30-60cm

(a) The audible noise does not affect the system performance. (b)
The accuracy drops when ultrasound volume is <50db. (c) Nearby
motion interferes the accuracy. (b, c) But adaptive training helps.

All fingers' MAE decrease with distance
because 2.5D is proportional to image size




Experiment results
- demo applications

Demo applications

The first row is our prediction. The second row illustrate the gesture and its potential application. (We do each individual gesture repeatedly)
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https://docs.google.com/file/d/1sLrXLIio6eIn38DyeALjG8ydrXjdURb1/preview

Conclusion

- We build a fine-grained acoustic sensing system for hand tracking.

- It continuously tracks 21 joints in 3D

- It leverages on-device speaker and microphone with no hardware modification.
- Results show it work user-independently across environments.




Thanks

Feel free to reach out:
e [GitHub]
https://aithub.com/lydhr/Beyond-Voice
° EC yl3243@cornell.edu

o & lynnelixyz
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