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Outline

1. Background: Intro to acoustic sensing in smart devices

2. Challenge: Playing music and sensing simultaneously in the same speaker
3. Method: Cognitive scaling in speaker mixer

4. Evaluation: model performance + user study result
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Background
- L1 Intro to acoustic sensing
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Background
- L1 Intro to acoustic sensing

R

Acoustic
sensing

ubiguitous

under-cm resolution

(>>speed than RF)

less privacy issue

non-line -of-sight




02
Challenge

Overload in mixer when playing music and sensing simultaneously




Challenge
- the concurrent-music problem

Play music and acoustic sensing signal on the same speaker
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Challenge

- the concurrent-music problem
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Challenge
- the concurrent-music problem

clipping scale down
Most acoustic sensing systems rely on aseuwrateFFFat the receiver end &large-pewerfor long detection range
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Challenge

- the concurrent-music problem

max

0

(())

max
0

min

Our solution: cognitive scaling

ultrasound sensing signal

—(G)> max;

music

wrhe

mixedjby thg mixer

0<

min




Challenge
- the concurrent-music problem

Our solution: cognitive scaling

ultrasound sensing signal mlxedlby thQ mixer
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Learning-based cognitive scaling in mixer




Method

Learning-based cognitive scaling in mixer

Our solution: cognitive scaling
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Method

Learning-based cognitive scaling in mixer

Problem definition:

catenate
e |nput:
o sensing signal x %
o concurrent music z il L e
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Method

Learning-based cognitive scaling in mixer

Problem definition:

e Loss:

o q(X+z,m) (the difference of the magnitude) —— Maximal power

o  p(x,x) (thedifference in frequency domain)
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Method

Learning-based cognitive scaling in mixer

Problem definition:

e Loss:

o q(X+z,m) (the difference of the magnitude)

magnitude
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o p(x,%) (the difference in frequency domain) <—— Minimal distortion
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Method

Learning-based cognitive scaling in mixer

Problem definition:

e Loss:
o q(X+z,m) (the difference of the magnitude) M?X'imal power
o p(x,%) (the difference in frequency domain) ~— Minimal distortion
o s(Z) (the variance of all frequency) (FMCW only)




Method

Learning-based cognitive scaling in mixer

e |oss:
o q(X+z,m) (the difference of the magnitude)
o p(x,x) (the difference in frequency domain)
o s(2) (the variance of all frequency) (FMCW only)

l0S8Ssine = axp(x,Z) + B*q(T + z,m)
axp(z,£) + B*q(Z+ z,m) + 7 * s(2)

0SS chirp




Method

Learning-based cognitive scaling in mixer

Problem definition:

e |oss:
o q(X+zm) (the difference of the magnitude)
o p(x,X) (the difference in frequency domain)

12-norm of the mixed magnitude normalized by m, N is window si:
X+z

1
2Nl(m)

qg(x+z,m)=1-
Minimal
[2-norm of FFT coefficients, (further customize it for sine wave, f_is the target frequency) distortion
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Method
Learning-based cognitive scaling in mixer

Model structure

catenate WaveNet Conv2x1 & link function
l Residual out
sensing: X E * ) h
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Method

Learning-based cognitive scaling in mixer

Link function

catenate WaveNet Conv2x1 & link function
Residual out
sensing: X + h
Residudl|in @ E . ll' '
) - . A
‘ SR ol ( : > = sensing: X
music: z ....skip out Nth §

Create windowed-sinc impulse response for given cutoff frequencies.




Method

Learning-based cognitive scaling in mixer

Link function

catenate WaveNet Conv2x1 & link function
Residual out
sensing: X + h
Residudl|in @ E . .' '
‘ skpout 1st @_, 3 sensing: £
music: z ....skip out Nth §
a —a
‘ . e =
Bt ) clip(flx)) X =tanh(a) sm-z= ——s«m-z
o o

° f ° I e match the domain

e encourage large amplitude
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Evaluation

| performance + U




Evaluation - part 1: model performance

e Dataset
o Piano
m Beethoven dataset
e abenchmark music dataset for audio generation.
e music for a total duration of 10 hours
m  YouTubeMix dataset
e music dataset with higher-quality recordings than Beethoven
e atotal duration of 4 hours.
Hot songs: top-ranking Billboard songs from 2019 and 2022. 2h+
Bass: bass-centric playlists for low-frequency audio. Th ~ 2h
Speech: podcast of conversational speech. Th+
(We interpolate all the data to a sample rate of 48k Hz and cast the 8-bit
guantization into 16-bit signed integer. )

o O O O




Evaluation - part 1: model performance

e Generalization across datasets and music types

sine chirp
0.8 1 intra-dataset
o 1.0 . B cross-dataset
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0.4
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The model generalizes well to unseen datasets and new
types of music or speech.




Evaluation - part 1: model performance

e Ablation study results
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Evaluation - visualization

Visualization in frequency domain:

e Peak gradually converges to target frequency with neglectable sidebands
e While the clipped(x) has worse distortion as highlighted with the circles

FFT(x) FFT(x)




Evaluation - visualization

Evaluation/Visualization in frequency domain:

e Peak gradually converges to target frequency with neglectable sidebands
e While the clipped(x) has worse distortion as highlighted with the circles
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Evaluation - computation efficiency

e Roofline plot of computation cost of our deep learning model
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Evaluation - field study

Field study on a downstream tasks

e Task: respiration rate detection and gesture classification

e 12 participants, 12 sessions per participant, 1 minute per session
e Ground truth: Venier belt with pressure sensor for breath rate

e Setup: Android phones and iPhone

e Signal: sinewave and FMCW (18K-20KHz)

e Baseline: no-concurrent-music, clipping, downscaling (by 1X and 2X)




Evaluation - field study

e Compared with sensing with no music, the baselines degrade sensing performance,

while CoPlay does not.
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(a) breath rate detection (b) gesture recognition




Evaluation - field study

Break down the results:

- CoPlay detects the breath rhythm with less noisy and minimal power loss
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Evaluation - field study

Break down the results:

- CoPlay detects the breath rhythm with less noisy and minimal power loss
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Evaluation - field study

Qualitative study:

- Q1) Did you hear a buzzing noise?
- Q2) Did you hear the music at adequate volume?

- Q3) Did you perceive delay or discontinuity?

clipping downscale CoPlay
Q.1 (5 = buzzing) 4.72 1.13 1.22
Q.2 (5 = loud) 4.14 1.12 4.49
Q.3 (5 = delay) - - 1




Future work

e More extensive tests:
o More downstream tasks, sensing
signals, diverse hardwares, etc
e Validation:
o Computation escalation using
multi-channels
o Explore acceleration methods like
model compression and acceleration




Th%pks

Codebase is to be published on https://github.com/lydhr/CoPlay
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